Scalable Node Programming with OpenACC

Date: September 20, 2017
Presented by: Michael Wolfe, NVIDIA

The presentation material along with the video will be made available at the following link:
https://exascaleproject.org/event/openacc/

Q. For C++ using PGI compilers, what is the best dynamic array type to use? Can one
use C++11 vector<>, boost/Eigen? new Array? or malloc?

A. Avoid std::vector since it's not thread safe and given it's an opaque type, the compiler
has no visibility as to what the actual data type is so doesn't know how to copy it on the
device. You can use CUDA Managed memory (-ta=telsa:managed) to help since you
don't need to worry about the dynamic data movement. Still, std::vector isn't the best
choice for highly data parallel architectures such as the GPU. New or malloc’d arrays of
fundamental data types work best.

Q. In an inner nested OpenAcc parallel loop one can use counters (say an int), but how
does one add to a common array for results?

A.
Fori
Forj
For k
Arri][j] ... // this isn’t parallel due to a dependency over the k loop

We could solve this using atomics or possibly using a scalar reduction over the k loop and then
assign the result back to arr.

Example using a reduction:

Fori
Forj
Sumval = Arri][j]
#pragma acc loop reduction(+:Sumval)
For k
Sumval +=
End for k
Arrli][j] = Sumval

https://exascaleproject.org/event/openacc/
https://exascaleproject.org/event/openacc/

Example using Atomics:

Fori
Forj
For k
#pragma acc atomic update
Arril[j] = Arr[i]li] + ...

Q. For the CPU openacc code, does the compiler optimize it for one core using SIMD like
"omp simd"?

A. The compiler may auto-vectorize the code using SIMD instructions. Though the PGl
compiler doesn’t currently doesn'’t utilize the “vector” schedule clause (which is roughly
equivalent to “omp SIMD”) and instead relies on auto-vectorization. We hope to extend
this capability in the future.

Q. Is cloverleaf an explicit algorithm or does it use CG/multigrid?

A. ltsit's own application and can be found at: http://uk-mac.github.io/CloverLeaf/

Q. Prior to 17.7, is there no way to do manual deepcopy? Are structures just not
supported or just hard to implement?

A. PGI has supported manual deepcopy since 2014 and it is being added to the OpenACC
2.6 standard. In PGI 17.7 we introduced implicit deepcopy (i.e. the compiler performs
the deepcopy) for Fortran UDTs. Since Fortran arrays have descriptors, the compiler
runtime has enough information to perform the implicit deep copy. For C/C++ aggregate
types with dynamic data members, the compiler runtime has no information about the
size and shape of the dynamic members (they’re just unbounded pointers), so can’t
implicitly make a copy.

Q. For manual deepcopy, can the data enter clause for the structure and its children be in
the same clause, or does one need to use separate clauses for each level?

A. They can be in the same clause, but currently for PGI, order does matter so the parent
should come before the children. l.e. “enter data create(v,v%r[0:n],v%t[0:n],v%p[0:n])".
If "v" (the parent) isn't on the device yet when "v%r" is created, the compiler won't be
able to "attach" it to the parent. So "v" must be created before "v%r"

Q. Can | use two GPUs in a single node using a single unified memory?

A. The short answer is yes. Though only with more recent versions of CUDA (8/9) and

recent devices Pascal/Volta. More details can be found at:
https://devblogs.nvidia.com/parallelforall/unified-memory-cuda-beqginners/.

Q. Does deepcopy in 17.7 support the "default(present)" clause?

A. These are related but different things. “default(present)” states that all variables that are
implicitly shared be tested that they are present. Deepcopy has to do with how the data
is created and copied to/from the device. A variable that has been successfully created
on the device (deepcopy or otherwise) will have an entry in the present table and
therefore can be tested for presence on the device.

https://devblogs.nvidia.com/parallelforall/unified-memory-cuda-beginners/

